The influence of briefly presented randomized target motion on the extraretinal component of ocular pursuit.

نویسندگان

  • G R Barnes
  • C J S Collins
چکیده

We assessed the ability to extract velocity information from brief exposure of a moving target and sought evidence that this information could be used to modulate the extraretinal component of ocular pursuit. A step-ramp target motion was initially visible for a brief randomized period of 50, 100, 150, or 200 ms, but then extinguished for a randomized period of 400 or 600 ms before reappearing and continuing along its trajectory. Target speed (5-20 degrees /s), direction (left/right), and intertrial interval (2.7-3.7 s) were also randomized. Smooth eye movements were initiated after about 130 ms and comprised an initial visually dependent component, which reached a peak velocity that increased with target velocity and initial exposure duration, followed by a sustained secondary component that actually increased throughout extinction for 50- and 100-ms initial exposures. End-extinction eye velocity, reflecting extraretinal drive, increased with initial exposure from 50 to 100 ms but remained similar for longer exposures; it was significantly scaled to target velocity for 150- and 200-ms exposures. The results suggest that extraretinal drive is based on a sample of target velocity, mostly acquired during the first 150 ms, that is stored and forms a goal for generating appropriately scaled eye movements during absence of visual input. End-extinction eye velocity was significantly higher when target reappearance was expected than when it was not, confirming the importance of expectation in generating sustained smooth movement. However, end-extinction eye displacement remained similar irrespective of expectation, suggesting that the ability to use sampled velocity information to predict future target displacement operates independently of the control of smooth eye movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auditory clicks distort perceived velocity but only when the system has to rely on extraretinal signals.

Previous work has found that repetitive auditory stimulation (click trains) increases the subjective velocity of subsequently presented moving stimuli. We ask whether the effect of click trains is stronger for retinal velocity signals (produced when the target moves across the retina) or for extraretinal velocity signals (produced during smooth pursuit eye movements, when target motion across t...

متن کامل

Dynamic interaction between retinal and extraretinal signals in motion integration for smooth pursuit.

Due to the aperture problem, the initial direction of tracking responses to a translating bar is biased towards the direction orthogonal to the bar. This observation offers a powerful way to explore the interactions between retinal and extraretinal signals in controlling our actions. We conducted two experiments to probe these interactions by briefly (200 and 400 ms) blanking the moving target ...

متن کامل

Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements.

To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and o...

متن کامل

Evidence for a Retinal Velocity Memory Underlying the Direction of 9 Anticipatory Smooth Pursuit Eye Movements

37 To compute spatially correct smooth pursuit eye movements, the brain uses both retinal 38 motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). 39 However, when smooth eye movements rely solely on memorized target velocity, such as during 40 anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal 41 information such as h...

متن کامل

Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs.

1. We investigated cells in the middle temporal visual area (MT) and the medial superior temporal area (MST) that discharged during smooth pursuit of a dim target in an otherwise dark room. For each of these pursuit cells we determined whether the response during pursuit originated from visual stimulation of the retina by the pursuit target or from an extraretinal input related to the pursuit m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 2  شماره 

صفحات  -

تاریخ انتشار 2008